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Abstract

The simulation extrapolation method developed by Cook and Stefanski (1995) is a simula-
tion based technique for estimating and reducing bias due to additive measurement error
armed only with knowledge of the variance of the measurement error distribution. However
there are many instances in which validation data are not available, and measurement error
is known not to have mean zero. For example, in assessing phylogenetic cluster size of HIV
viruses, cluster size is systematically underestimated since clustering can only be performed
on the viruses of those individuals who have presented for testing. In this setting, it is not
possible to obtain validation data; however, using knowledge gleaned from the literature,
the distribution of the errors may be estimated. In this work, we extend the simulation
extrapolation procedure to accommodate errors with non-zero means, motivated by an in-
terest in determining behavioural correlates of HIV phylogenetic cluster size. We provide
theoretical justification for the generalization to the non-zero mean measurement error case,
proving its consistency and demonstrating its performance via simulation. We then apply
the result to data from a the province of Quebec in Canada to show that findings from a
näıve analysis are robust to a substantial range of possible measurement error distributions.

Keywords: SIMEX; non-zero mean measurement error; HIV.

1. Introduction

Since the discovery of the human immunodeficiency virus (HIV) in 1981, HIV has caused
nearly 36 million deaths (as of 2012) (amFAR, 2012). While there is no cure or vaccine for
HIV, current therapies are highly effective and have dramatically reduced mortality due to
HIV. Nevertheless, HIV places an immense burden on individuals and societies, with the
annual costs (medical and lost productivity) of new HIV infections in the United States esti-
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mated at $16 billion in 2010 (Annual Cost, 2010). There is considerable research activity on
HIV in Montreal, Canada. One such study is SPOT (SPOT, 2013), which offers rapid, free
and anonymous testing to the community of men who have sex with men (MSM), primarily
targeting men who frequent gay social venues. Individuals who are tested at SPOT provide
questionnaire data, and for all individuals found to be HIV+, their blood undergoes HIV
sequencing. The HIV sequencing information is supplemented with HIV sequencing infor-
mation from the Quebec genotyping program (Genotype Information, 2010) to determine
the size of the sexual network to which the individual belongs, i.e. the number of other
HIV+ individuals in the province of Quebec whose HIV sequence fall into the cluster in a
phylogenetic analysis. Researchers wish to combine the phylogenetic and epidemiological
data to learn about correlates of large phylogenetic clusters (Brenner et al., 2007, 2013;
Brenner and Wainberg, 2013). Transmission cluster size (or simply cluster size) is defined
as the number of individuals falling into the same HIV phylogenetic grouping. For exam-
ple, if the HIV sequence of six individuals fall into the same cluster, each will be said to
belong to a cluster of size six; if there is an individual whose HIV genome sequence does
not cluster with the HIV genome of anyone else in the Quebec genotyping program reg-
istry of sequences, this individual is said to belong to a cluster of size one. However, the
data available do not include individuals who are HIV+ but are unaware of their status
(i.e. have never been tested) nor those who have not had their HIV genotyped (viral load
less than 400 copies per ml) (Brenner et al., 2007); there may also be a small number who
have been tested outside of the province of Quebec and not yet been seen by a physician
in the province. Consequently, measurement error occurs in defining the cluster size. This
measurement error is characterized by a systematic undercounting of the true cluster size
due to the absence of the individuals who have not been tested. Thus, to make correct
statistical inference about correlates of sexual network size, this measurement error must
be taken into consideration.

There are several approaches to handle measurement error: e.g., method of moments,
regression calibration (Carroll and Stefanski, 1990; Gleser, 1990), multiple imputation (Ru-
bin, 1987; Cole et al., 2006), and simulation extrapolation (SIMEX) (Cook and Stefanski,
1995); most require validation data, which is infeasible to collect in the case of phyloge-
netic or transmission cluster size. Unlike regression calibration and multiple imputation,
SIMEX does not require validation data. The approach does, however, require that the
measurement error distribution is known or can be well-estimated. In some instances, such
as when data arise from a well-understood laboratory assay, the error distribution may be
known exactly. In other instances, the distribution may be estimated from validation data
if available, or posited based on information available in the literature, or simply assumed
(and varied) as in a sensitivity analysis. In the few existing applications of SIMEX in the
epidemiological literature, the error distribution has been determined or estimated using a
combination of expert judgment and data from the literature (Li and Lin, 2011; Kim and
Gleser, 2000; Slate and Bandyopadhyay, 2009; Heid et al., 2009; Costas et al., 2009; Shang,
2012; Allodji et al., 2012; He et al., 2012).

The simulation extrapolation method developed by Cook and Stefanski (Cook and Ste-
fanski, 1995; Stefanski and Cook, 1995; Carroll et al., 1996) is a simulation based technique
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for estimating and reducing bias due to additive measurement error. The SIMEX procedure
does not require validation data, but does require the distribution of the measurement error
to be posited, which may be possible using known properties of a measurement instrument
such as a laboratory assay, or from existing literature. SIMEX is a two-step estimation
procedure in which additional measurement error is added (in known increments) to the
mis-measured data in a resampling-like stage, and a trend between the resulting estimates
and the variance of the added measurement errors is established. To date, SIMEX has been
limited to mean zero random errors, and will therefore need to be extended to alternative
error distributions to be used in the context of under-counted measures. We shall extend
the method to accommodate errors with non-zero means, so as to apply it to the SPOT
data to determine behavioural correlates of cluster size. In section 2, we develop the theory,
then demonstrate its performance in simulations in 3. Next, we apply the method to SPOT.
Section 5 discusses the findings.

2. The Simulation Extrapolation (SIMEX) Method

In SIMEX, estimation proceeds in two step: a simulation step and an extrapolation step.
Estimates are obtained by increasing the measurement error in the mis-measured data in
a resampling-like stage, computing estimates from the contaminated data, establishing a
trend between these estimates and the variance of the added measurement errors, and ex-
trapolating this trend back to the case of no measurement error. The main idea is to use
the information from an incremental addition of measurement error to the mis-measured
data using computer-simulated random errors. Adding extra measurement error to the data
by simulation allows the researcher to learn about how the estimator’s bias is affected by
the increase of the measurement error variance. This is the so-called simulation step. In
the extrapolation step, the obtained parameter estimates are modelled as a function of the
magnitude of the variance of the measurement error and extrapolated to the case of no
measurement error. We begin by briefly describing the simulation-extrapolation procedure
for zero mean measurement error and then present in detail the extension to non-zero mean
measurement error, which we call the non-zero mean SIMEX (NZM-SIMEX), then proceed
to derive its large sample properties.

A short description of SIMEX: Suppose Ui, i = 1, ....., n, is the unobserved true
explanatory variable and an error-prone version Xi is available, where Xi = Ui + δi, for
δi ∼ N(0, σ2

δ ) and it is independent of Ui and Yi. In the simulation step of SIMEX procedure,
artificial measurement error is added to Xi, and B new covariates Xi,b(λk) are generated
via Xi,b(λk) = Xi+

√
λkδib, where b = 1, ...., B; k = 1, ....,K and i = 1, ...., n for values of λk

are chosen by the analyst and {δi,b}Bb=1 are independent computer simulated normal random
numbers from N(0, σ2

δ ). It can be shown that the variance of Xi,b(λk) is σ2
U + (1 + λk)σ

2
δ ,

which increases with λk. For each λk, let β̂b(λk) denote the vector of näıve estimates
obtained by regressing Y on Xi,b(λk). Using B estimates for each λk, an average estimate

can be obtained as B−1
B∑
b=1

β̂b(λk). By regressing β̂b(λk) on λk, and extrapolating back to

λk = −1, we find the estimate β̂(−1) corresponding to error σ2
U + (1 + λk)σ

2
δ = σ2

U , i.e., to
the error free setting. A prototypical example (based on simulated data) on the estimates
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β̂(λk) and the extrapolating function that describes the regression of β̂(λk) on λk is given
in Figure 1 for illustration.

Simulation step

Let us consider the simple linear regression model

Yi = β0 + β1Ui + εi,

where the true predictor Ui follows a distribution with finite variance σ2
U and E[εi] = 0.

Suppose Xi is an imperfect measurement of Ui which is defined as

Xi = Ui − δ∗i ,

where δ∗i follows a distribution with E[δ∗i ] = µδ∗ and V ar[δ∗i ] = σ2
δ∗ . Also, δ∗i is independent

of Yi and Ui. For example, in the SPOT data, where Ui is the true value of the count variable
‘cluster size’, it may be reasonable to assume δ∗i ∼ Poisson(µ), so that E[δ∗i ] = V ar[δ∗i ] = µ.
In other instances we may wish to consider δ∗i = |δi|, where δi ∼ N(0, σ2

δ ), so that δ∗i

follows a folded Normal distribution with E[δ∗i ] = σδ

√
2
π and V ar[δ∗i ] = σ2

δ (1 −
2
π ). In

the simulation step, additional, simulated measurement error is added to the imperfectly
measured covariate Xi, and B new covariates Xi,b(λk) are generated using the rule:

Xi,b(λk) = Xi −
√
λkδ
∗
ib + (1 +

√
λk)E(δ∗ib)

= Xi −
√
λkδ
∗
ib + (1 +

√
λk)µδ∗ , (1)

where b = 1, . . . , B; k = 1, . . . ,K and i = 1, . . . , n. The parameters λk ≥ 0 control the

variance of the measurement error, and are chosen by the analyst, while
{
δ∗i,b

}B
b=1

are

artificially introduced random numbers from the distribution of δ∗i . Note that this is not
identical to the simulation step in the traditional (mean zero error) SIMEX, but rather an
additional term, (1 +

√
λk)µδ∗ , has been included in the generation of Xi,b(λk) to account

for the non-zero mean of the errors. Carroll et al. (Carroll et al., 1995) recommended taking
λk as 0 = λ0 < λ1 < · · · < λK = 2. Note that using (1) ensures that

E[Xi,b(λk)] = E(Ui).

The simulation step creates B additional datasets (replication samples to reduce simu-
lation variability) with the same dependent variable Yi and covariate Xi,b(λk) for each λk.
The variance of Xi,b(λk) is

V [Xi,b(λk)] = V
[
Xi −

√
λkδ
∗
ib + (1 +

√
λk)µδ∗

]
= V

[
Ui − δ∗i −

√
λkδ
∗
ib + (1 +

√
λk)µδ∗

]
= σ2

U + (1 + λk)σ
2
δ∗

which increases with the control parameter λk. For each λk, let β̂b(λk) denote the vector
of näıve estimates obtained by regressing Y on Xi,b(λk). Using B estimates for each λk, an
average estimate can be obtained as

β̂NZM (λk) =
1

B

∑
β̂NZMb (λk). (2)
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Figure 1: A generic plot of the effect of measurement error of size (1 + λk)σ∗2
δ on parameter

estimates when measurement error follows a folded normal distribution. The SIMEX estimate is an
extrapolation to λk = −1 whereas the näıve estimate occurs at λk = 0.

Extrapolation step

In the extrapolation step, each component of the vector β̂(λk) is plotted against λk for
λk ≥ 0, and regression techniques are used to fit an extrapolant function. In particular,
β̂NZM (λk) is typically regressed on λk assuming either a quadratic or a non-linear relation-
ship (e.g., a lowess smoother). The NZM-SIMEX estimator, denoted β̂NZM , is obtained
as the extrapolation of β̂(λk) at λk = −1, which is the ideal case in which there is no
measurement error. See Figure 1 for a prototypical figure showing a plot of β̂(λk) against
λk and the resulting NZM-SIMEX estimate.

Below, we state two key properties of the NZM-SIMEX estimator, β̂NZM ; proofs in
the linear regression setting are provided in the Appendix A. As in the zero-mean error
distribution setting (Cook and Stefanski, 1995), results hold for more general regression
problems, including the fitting of generalized linear models (Li and Lin, 2011), non-linear
regression models (Carroll et al., 1996), quantile regression models (Shang, 2012), acceler-
ated failure time models (Wenqing et al., 2012), and even generalized linear mixed models
(Wang et al., 2009), but cannot be shown in closed form; results demonstrating the feasibil-
ity of the SIMEX in these setting has relied on simulations. As in the previous literature,
we provide theorems for the linear regression setting, and demonstrate the performance of
the method in the generalized linear regression setting by simulation but not analytically.
Both theorems rely on the assumption that the variance of the measurement error is known
and finite. The proofs rely extrapolating to the no-error setting; while we can show this
explicitly (i.e. in a closed form solution) in a linear regression setting, the extrapolation
does not rely on the distribution of Y .
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Theorem 1:

The SIMEX estimator for non-zero mean measurement error, β̂NZM , converges in proba-
bility to β.

Theorem 2:

β̂NZM is a nonlinear function of λk.

3. Simulation study

A simulation study was carried out to empirically evaluate the performance of the NZM-
SIMEX procedure under ideal and non-ideal conditions for a variety of outcome and covari-
ate distributions at different sample sizes. In particular, we consider both the case where
the error distribution is known exactly, and cases where it is not (e.g. it is known that the
error follows a Poisson distribution, but an incorrect mean is assumed). A large range of
settings were considered, including but not limited to the Poisson-distributed error setting
which will be used in the empirical analysis of Section 4, to showcase the versatility of the
methodology across a variety of possible scenarios.

3.1 Design of the simulation study

As the derivation of the NZM-SIMEX is general, we aimed to assess its performance under
a variety of conditions specified by the outcome and error distributions. Parameters were
chosen to follow those used by Cook and Stefanski (1995). In all instances, we report the
bias, standard error (SE) and mean squared error (MSE) of the näıve and NZM-SIMEX
estimators based on 1000 simulations. The sample sizes considered were n = 100, 500 and
1000. In our motivating data that has been analysed in section 4.2, we have sample size
n = 33. Therefore, we considered some simulation situations for n = 33.

Three outcome distributions were considered: normal, Poisson and Bernoulli distribu-
tions. For normally distributed outcomes, data were generated from the model

E(Y |U, V ) = β0 + βUU + βV V + βUV UV.

For the Poisson distributed outcomes, data were generated from a log linear regression
model

log[E(Y |U, V )] = β0 + βUU + βV V + βUV UV.

For the binary response, data were generated from a logistic regression model

logit[P (Y = 1|U, V )] = β0 + βUU + βV V + βUV UV.

Details of the simulation settings for (U, V ), β = (β0, βU , βV , βUV )′, δ and δ∗ are given
in Table B1 of Appendix B, with Scenarios 1-10 covering Normally-distributed outcomes;
Scenarios 11-12 the Poisson-distributed outcomes, and Scenario 13 the binary outcome.

For NZM-SIMEX procedure, we considered λk ∈ {0, 1
8 ,

2
8 , . . . ,

15
8 ,

16
8 }, b = 200, and

Xb = X −
√
λkδ
∗
b + (1 +

√
λk)E(δ∗b ),

where for the normally distributed outcome only, δ∗b = |δb|.
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3.2 Results of the simulation study

The simulation results are shown in Figure 2, Figure 3 and Tables B2-B5 in Appendix B.
It is evident from these results that the NZM-SIMEX procedure leads to a considerable
reduction of the bias compared to the näıve estimator.

When the error distribution is correctly specified by the analyst in the NZM-SIMEX
method, the bias of the NZM-SIMEX estimator is much less than the näıve estimator.
Biases depend on the magnitude of measurement error, whatever the distribution of the
measurement error (Tables B2, B4 and B5). However, we also see that the bias reduction
in the NZM-SIMEX estimators is less pronounced with increasing degrees of measurement
error.

Irrespective of the parametric distribution of the errors (folded normal or Poisson), when
parameters of the measurement error distribution are incorrectly specified, it is observed
from Table B3 that the NZM-SIMEX estimator performs sub-optimally. However, while the
NZM-SIMEX estimator using an incorrect measurement error distribution to generate the
simulated errors performs worse than the NZM-SIMEX using the correct measurement error
distribution, performance remains superior to that of the näıve estimator. Under-estimation
the variability of the measurement error leads to greater bias in the NZM-SIMEX than
over-estimation. It is also apparent from the results that, with the very few exceptions, the
non-linear fit in NZM-SIMEX procedure yields less biased estimates than quadratic fit.

For discrete Poisson and binary distributed outcomes, it is observed from Table B4 and
B5 that for the correctly specified error distribution, the NZM-SIMEX yields a less biased
estimator than the näıve approach. In all cases, performance of NZM-SIMEX improves
as the sample size increases. Thus, when the distribution of the errors is known, NZM-
SIMEX performs well in recovering the true value of the parameter of interest. When
the error distribution is mis-specified, the NZM-SIMEX procedure exhibits some bias, but
nevertheless significantly outperforms the näıve estimator.

4. Analysis of the SPOT data: Correlating behaviour and cluster size

We now turn back to the motivating question in the analysis of the SPOT data. As noted
above, neither SPOT nor the Quebec HIV genotyping program includes HIV+ people who
are unaware of their HIV status. We may also fail to capture individuals who underwent
testing outside the province of Quebec. This induces measurement error in defining cluster
size. In particular, it causes an underestimation of the true cluster size so that, clearly,
measurement error in cluster size is not mean zero.

We used data from the SPOT study up until April 2012. At that time, SPOT had tested
1803 MSM, 34 of whom were found to be HIV positive. For all participants, questionnaire
data includes several measurements on socio-demographic characteristics, HIV testing be-
haviour, sexual practices including risk behaviour, history of sexually transmitted infections,
and attitudes toward HIV. In this analysis, we focus on the HIV+ individuals and consider
whether any of the following variables are correlates of cluster size: age, whether or not a
condom was used at last sexual intercourse, number of sex partners, and whether or not an
HIV test was taken in the last 24 months. Except for cluster size, one individual’s ques-
tionnaire data was incomplete; we omit this individual from the analysis, instead analyzing
the 33 men with complete data.
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Figure 2: Bias and MSE of the parameter estimator associated with the error prone variable for
two different measurement error distributions.
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Figure 3: Bias and MSE of the parameter estimate associated with the error prone variable for two
different measurement error distributions.
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With the goal of identifying the relationship between cluster size and age, number of
sex partners, not using a condom at last sexual intercourse, HIV testing status during last
24 months and number of one night partners we adopted seven distinct regression models.
For each variable, both NZM-SIMEX (using quadratic and non-linear extrapolation) and a
näıve model were used to obtain estimates. We fit two linear regression models of age on
cluster size and number of sex partners on cluster size. We fit two logistic regression models,
where in the first model not using a condom at the last sexual intercourse was considered as
response variable and in the second model HIV testing status (during last 24 months) was
taken as the outcome. Also considering number of sex partners and number of one night
partners as count variables, we fit two log-linear models: number of sex partners on cluster
size, and number of one night partners on cluster size. Furthermore, considering number of
one night partners as a categorical variable (Category 1: < 2 partners, Category 2: 2 − 4
partners, and Category 3: ≥ 5 partners), we fit a multinomial regression model considering
Category 1 as the reference group. In all models, cluster size was the only covariate.

4.1 Measurement error cluster size

Cluster size is an error-prone covariate; it is cardinal, and hence we assumed the error
followed a Poisson distribution. Unfortunately, for data such as SPOT, there is no means of
obtaining validation data to inform the distribution of the error short of testing all residents
of the province of Quebec, which is both unethical and infeasible. Thus, to specify the mean
of this Poisson distribution, we were required to estimate the cluster size distribution for
those HIV positive individuals who were not in the Quebec genotyping program because
they had not received an HIV test or had been tested outside of Quebec. We now describe
the process by which we estimated the distribution of the error in cluster size.

The adult (age > 15) population of Quebec in 2012 was 6, 802, 700 (Statistics Canada,
2013) with HIV incidence rate 7 per 100, 000 (HIV statistics Avert). Thus, the total number
of newly HIV positive individuals in Quebec can be estimated as 6, 802, 700×0.00007 ≈ 476.
In Canada, approximately 25% of people who are living with HIV do not know that they
are infected (CATIE, 2011). Therefore, the estimated number of people number of people
who are HIV+ but not in the Quebec genotyping cohort in Quebec can be estimated as
(476/0.75)−476 ≈ 159. These 159 subjects are not included in determining the cluster size.
Experts believe that among the MSM community, 15% do not know their status (INSPQ,
2012), so our estimate of 25% may be conservative. Also, because clusters typically persist
(Brenner and Moodie, 2012; Brenner et al., 2013) for one or at most two years (i.e. after 12-
24 months, few or no new infections are observed with a viral sequence that is genetically
very similar), we use the annual HIV incidence rate rather than the prevalence rate to
estimate the number of HIV positive individuals in Quebec who are “missing” from our
clustering cohort.

We then looked at the cluster size distribution of the 34 HIV positive individuals from
the SPOT data (see, Table 1) to estimate the cluster size for 159 unseen HIV+ individuals.
In the SPOT study 36% are linked to clusters that are at least of size 2-9, 29% are linked
to clusters of size 1 and 35% are linked to clusters of size ≥ 10. Brown et al. (2011)
estimated cluster size for MSM from HIV sequences in the United Kingdom. They reported
29% belonged to cluster size 1, 41% are linked to 2 − 9 individuals and 29% are part of
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cluster size of more than 10 people. Lewis et al. (2008) studied the short term dynamics
of the episode among MSM in the United Kingdom. In their analysis they found that
15% belonged to cluster size 1, 60% are linked to 2 − 9 and 25% belonged to cluster size
≥ 10. Based on these studies and the SPOT cluster size distribution, we propose a Poisson
distribution for the error whose mean, on average, is big enough, to give us a distribution of
cluster sizes that is similar to the percentages listed above (i.e. 25-30 % of people in clusters
≥ 10, 40 % in clusters of 2 − 9 people). A reasonable Poisson distribution to achieve this
would be Poisson(3). Poisson distributions with mean 1, 5, and 10 were also considered to
evaluate the sensitivity of the results to the observed measurement error distribution.

4.2 Results

Table 1 shows the summaries of selected characteristics for 33 HIV positive MSM. The mean
age of the HIV positive MSM in SPOT is 33. The average number of sex partners is 5.8.
About 85% of individuals reported not using a condom on their last sexual intercourse and
the majority (88.2%) reported having been tested for HIV in the last two years. Moreover,
most (about 62%) belonged to clusters of size 3.

Results from all analyses, whether fit ignoring measurement error or accounting for the
error using the NZM-SIMEX, were not significantly different from 0. The lack of significant
findings does not appear to be driven by the small sample size leading to highly variable
estimators: the estimates themselves were near the null values. For example, log-linear
models examining the association between cluster size and number of sex partners (one
night or total), point estimates indicate that a one-person increase in the cluster size is
associated with a 0.3 - 0.5% increase in the number of sex partners. Considering that the
average number of one night partners reported in the SPOT sample is (approximately) 4,
one would need to compare groups of men whose cluster size differed by at least 40 people
for the expected number of one night partners to increase by one individual to 5.

See Tables C1 to Table C4 in Appendix C for full results. A graphical representation of
the SIMEX estimate has also been presented in Figure 4. To obtain standard errors (and
p-values for the tests of association) for the NZM-SIMEX estimates, we used a bootstrap
procedure with 1000 resamples. That is, both the näıve and NZM-SIMEX (both quadratic
and non-linear) approaches yielded the same conclusions (cluster effect is not significant);
the estimated parameter were different, but in most cases, not dramatically so. Moreover,
different error distributions in all the models produce the similar results ensuring that
results are robust to the assumption regarding the mean of measurement error distribution.
We therefore conclude that the point estimates appear to be robust to the presence of
measurement error. Thus, we conclude We observe that in cluster size is not found to have
a statistically significant association with the demographic and behavioural covariates of
interest, suggesting that these individual level characteristics are unlikely to be helpful in
identifying – and potentially breaking the cycle of HIV transmission within – large clusters.

4.3 Limitations and discussion of the analysis

This ongoing study primarily targets participants who frequent gay social venues and there-
fore may not be representative of the Montreal MSM population. Therefore, the results from
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Table 1: Characteristics of 33 HIV positive MSM. For quantitative variables, mean(SD) are
provided; for factor variables, counts (percentage) are reported

Characteristic Summary Measure

Age 33 (9.5)
No.of Sex Partners 5.8 (4.7)
No condom use 29 (85.3%)
(in last sexual intercourse)
HIV tested 30 (88.2%)
(during last 24 months)
Cluster Size

1 10 (29.4%)
2− 3 3 (8.8%)
> 3 21 (61.7%)

Number of one night partners 4.27 (4.7)
< 2 14 (42.4%)
2− 4 4 (12.1%)
> 4 15 (45.5%)

−1.0−0.50.00.51.01.52.0

0.016
0.018

0.020
0.022

0.024
0.026

λ

β̂
cluster.size

Figure 4: SIMEX estimate a quadratic extrapolation at λ = −1 from the SPOT analysis relating
number of sex partner to cluster size. The näıve estimate occurs at λ = 0. The 95% pointwise
confidence intervals are indicated by dotted (—) lines.
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this study may not be generalized to all MSM. More importantly, our conclusions are likely
affected by limited power.

It is reasonable to speculate that the data in SPOT may be correlated: it is plausible
that the individuals in the study may know one another, and have similar demographic or
behavioural characteristics. While the available data provide no means of assessing any cor-
relation beyond the phylogenetic clustering, and approximately half of the individuals in the
SPOT study do not share HIV phylogenetic clusters with other SPOT participants, a simple
approach did not reveal significant within-cluster pairwise correlation. For example, fitting
(näıve) models of the association between each of age and number of one night partners
as a function of cluster size via generalized estimating equations positing an exchangeable
working covariance reveals a non-significant estimate of the within-cluster correlation of
approximately -0.2. The very small size of the SPOT sample creates two challenges in this
regard: Lack of significance in the correlation could be driven by lack of power. On the
other hand, a larger sample permit the inclusion of more covariates in the mean model, thus
affording better assessment of the residual within-cluster correlation. While membership in
the same HIV phylogenetic cluster can suggest direct sexual partnership, it is by no means
strong evidence of it. Routinely collected sequencing data is not well suited to investigating
transmission sources, as an individual whose HIV has not been sequenced may be a com-
mon source of infection or missing link in a transmission chain between two individuals in
the same cluster with genetically similar viruses, thus creating challenges in identifying the
likelihood that two individuals are indeed clustered in some sense beyond that suggested
by the phylogeny of the virus which infects them (Eric et al., 2013). Estimators based on
analysis that acknowledge the impact of clustering in data tend to be more efficient for
factors that vary within cluster, thus it is possible that our analyses missed a significant
finding through statistical inefficiency. Given the very small point estimates, however, it
seems implausible that any relationship that would be pertinent to public health planning
or policy exists in the relationships examined here.

In estimating the error variance of cluster size from the existing literature, it should
be noted that measurement error in cluster size was not taken into account in the cited
studies (Brown et al., 2011; Lewis et al., 2008). It is possible that our estimates of the
error variance are thus too low; for this reason, we considered a range of plausible error
distributions, however these did not serve to change the conclusions of our analyses.

All samples in the SPOT study were sequenced on the same platform: ABIPrism 3130xl
genetic Analyser; this platform was also used in the Quebec genotyping program for the ma-
jority of the cohort’s history from 2002 onwards, however the the TrueGene/Bayer HIV plat-
form was used from April 2004 to August 2006. Genome sequence interrelationships were
determined using maximum likelihood phylogenies estimated using BioEdit and MEGA2
integrated software and PAUP (version 4, Sinauer Associates). Clusters were then assigned
based on high bootstrap values (>98%), short genetic lengths (<1%), and congruent poly-
morphisms and mutational motifs (Hue et al., 2004). To assess stability of the estimated
cluster membership, phylogeny and estimate genetic distance was also estimated using a
Bayesian approach via the BEAST (version 1.6.1) software; cluster size and membership
estimated this way were similar to the maximum likelihood phylogenies. They were not,
however, identical. Thus, both the sequencing platform and the clustering approach are
additional sources of error introduced to the variable ‘observed cluster size’. The distri-
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butional parameters of this error (mean, variance) are unknown, and were not taken into
account in our analyses. As noted above, conclusions were unchanged under a range of
plausible error distributions, suggesting that taking into account additional sources of error
is unlikely to alter the conclusions of the analyses.

Finally, we wish to make two points regarding the interpretation of the our analyses.
First, we remind the reader that a cluster is not representative of a sexual or social network.
Rather, these are clusterings of the HIV genome taken from an individuals’ serum sample at
a fixed point in time (fixed for each individual, but varying across individuals). Individuals
are then said to cluster if the sequenced HIV genomes are determined to be ‘close’, in terms
of phylogenetic distance. Second, we note that the analyses were undertaken only in an
attempt to uncover whether there exists a significant correlation between various individual
characteristics and cluster size. Cluster size evolves over time in a highly dynamic fashion,
and thus the cluster size used in the analysis may not be reflective of the size of the cluster
at the time when an individual was infected with HIV. We do not attempt to attribute any
causal interpretation to the associations under investigation. The plausible directionality
of the relationship is that individual characteristics could lead to bigger or faster-growing
clusters, however as correlation (our estimand of interest) is a symmetric measure, we may
‘reverse’ the regressor and regressand without compromising its estimation.

5. Discussion

The simulation extrapolation procedure is useful and easily implemented technique to deal
with measurement error (Cook and Stefanski 1995), however its development was until
now limited to mean zero random errors. In this work, we have extended SIMEX to the
case where errors can have non-zero mean errors that can follow any known parametric
distribution. This was developed with the goal of analyzing data of HIV infected MSM
from the SPOT study, where measurement error occurs in defining the transmission cluster
size because of not including people who were unaware of their status or who had been
tested outside the province of Quebec.

In this work, we focused on the relatively simple setting of additive error that is inde-
pendent of both measured covariates and the true, unobserved value of the mismeasured
covariate. There are many settings in which this may not be realistic. For example, in the
case of the variable cluster size, it is plausible to posit that the error is related to the size of
the cluster so that bigger clusters have a greater error variance than smaller clusters. This
situation is considerably more challenging, since the error variance is then completely un-
observable. We are currently working on extending the NZM-SIMEX to the setting where
the error variance depends on observed covariates; extensions to the latent variable setting
will follow.

Through a number of simulation studies we evaluated the performance of NZM-SIMEX
under ideal and non-ideal conditions for a variety of outcomes and covariate distributions at
different sample sizes. Simulation studies showed that NZM-SIMEX performed reasonably
well in reducing biases as compared to näıve approach in all cases. The method performs
well in recovering the true value of the parameter when the distribution of the measurement
errors are known, and offers improvements (reduced bias) over the näıve estimator even when
the distribution of errors is known only approximately.
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We then applied the method to the SPOT study data, in a first attempt to elucidate
correlates of HIV phylogenetic cluster size. However this method is applicable in a number
of other settings. For example, in studying the association between mother’s age and
child mortality using data from Demographic and Health Survey (DHS) of Bangladesh,
researchers are faced with the challenge that women in the DHS frequently understate their
age. The NZM-SIMEX could be applied to model the relationship between child mortality
and mother’s age, estimating the distribution of the reporting error through hospital records
or other official registries. In other populations, the impact of illicit drug use on a variety
of health and quality of life outcomes is of interest. Illicit drug use may be under-reported,
and the magnitude of the error could be assessed via hair or urine samples.

The main limitation of the NZM-SIMEX is that it requires knowledge of the measure-
ment error distribution. In case of mis-specified (or, if validation data were available, poorly
estimated) error distribution, it may be safer to overestimate variability of measurement
error. In such cases, the NZM-SIMEX estimators perform significantly better than the
näıve estimators. Thus, to reduce the measurement error bias in a variety of problems,
NZM-SIMEX may be considered as a useful and easily implementable approach.
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Appendix A. Proofs

A.1 Proof of Theorem 1

Proof Let us again consider the following simple linear regression model

Yi = β0 + β1Ui + εi, (3)

where true predictor Ui follows N(µU , σ
2
U ) and εi has mean 0. Suppose Xi is an imperfect

measurement of Ui which is defined as

Xi = Ui − δ∗i , (4)

where δ∗i follows a distribution with mean µδ∗ and variance σ2
δ∗ , independent of Ui and Yi.

Note that under this measurement error specification, P (Xi < Ui) may be at or near 1,
depending on the distribution of Ui and δ∗i .

As noted above, B new covariates Xi,b(λk) are generated according to equation (1) so
that the total measurement error variance is then the variance ofXi,b(λk), i.e. σ2

δ∗(1+λk). For

the bth data set, regressing Y on Xb(λk) gives the vector of näıve estimates β̂NZMb (λk) =

(β̂0,b(λk), β̂1,b(λk))
′ of βb(λk) found via ordinary least squares (OLS), with the average

estimate at each λk computed according to equation (2).
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To study the asymptotic mean of the average estimate of slope and intercept, we sub-
stitute (4) into (3),which gives

Yi = β0 + β1(Xi + δ∗i ) + εi

= β0 + β1[Xi,b(λk) +
√
λkδ
∗
ib − (1 +

√
λk)µδ∗ + εi]

= β0 + β1Xi,b(λk) + ε∗i ,

where ε∗i = β1{
√
λkδ
∗
ib − (1 +

√
λk)µδ∗ + εi}. For the bth data set, the näıve estimate of the

slope β1 can be obtained by OLS, which yields

β̂NZM1b (λk) =

n∑
i=1

(Xi,b − X̄b)(Yi − Ȳ )

n∑
i=1

(Xi,b − X̄b)2

=
SXY −

√
λkSY δ∗b

SXX + λkSδ∗b δ
∗
b
− 2
√
λkSXδ∗b

. (5)

The näıve estimate of the intercept is

β̂NZM0b (λk) = Ȳ − β̂1b(λk)Ū . (6)

At each λk, the expected value of the estimator is

β̂1
NZM

(λk) = E
[
β̂NZM1,b (λk)|{Yi, Xi}ni=1

]
and

β̂0
NZM

(λk) = E
[
Ȳ − β̂NZM1b (λk)(X̄ +

√
λkδ̄∗)|{Yi, Xi}ni=1

]
,

where the expectation is in terms of the distribution of {δi,b} only.
It then follows that

E
[
β̂1
NZM

(λk)
]

= E
[
β̂NZM1,b (λk)

]
and

E
[
β̂0
NZM

(λk)
]

= E
[
β̂NZM0,b (λk)

]
.

Using the fact that

SXY
P−→ σXY ,

SXX
P−→ σXX ,

SY δb
P−→ σY δ∗b ,

Sδbδb
P−→ σδ∗b δ

∗
b

and SXδ∗b
P−→ σXδ∗b ,
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we obtain

β̂NZM1,b (λk)
P−→

σXY −
√
λkσ

∗
Y δb

σXX + λkσδ∗b δ
∗
b
− 2
√
λkσXδ∗b

and hence

β̂NZM1 (λk)
P−→

σXY −
√
λσY δ∗b

σXX + λkσδ∗b δ
∗
b
− 2
√
λkσXδ∗b

.

Here,

σXY = Cov(X,Y ) = Cov(U, Y ),

σY δ∗b = Cov(Y, δ∗b ) = 0,

σXX = V ar(X) = V ar(U + δ∗) = σ2
U + σ2

δ∗ ,

σδb∗δb∗ = V ar(δ∗b ) = σ2
δ∗

and σXδ∗b = Cov(X, δ∗b ) = Cov(U + δ∗, δ∗b ) = 0

By substitution into (5), we obtain

β̂NZM1 (λk)
P−→ Cov(U, Y )

σ2
U + (1 + λk)σ

2
δ∗

=
Cov(U, Y )

V ar(U)

V ar(U)

σ2
U + (1 + λk)σ

2
δ∗

= β1

[
σ2
U

σ2
U + (1 + λk)σ

2
δ∗

]
.

Hence,

lim
λk→−1

plim ˆβNZM1 (λk) = β1.

Similarly, considering (6), it can be shown that

lim
λk→−1

plimβ̂NZM0 (λk) = β0.

In the SIMEX extrapolation step, each component of the vector β̂(λk) is modelled as
a function of λk for λk ≥ 0. For example, for the slope parameter, this modelling can
be considered as a nonlinear regression problem, with dependent variable β̂NZM1 (λk) and
independent variable λk having a mean function of the form

g(λk) = β1

[
σ2
U

σ2
U + (1 + λk)σ

2
δ∗

]
.

The parameter of interest, β1, can be obtained from g(λk) by extrapolation to λk = −1,
yielding SIMEX estimate of β. We now demonstrate that the dependence of β̂NZM on λk
is a complex, non-linear form.
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A.2 Proof of Theorem 2

Proof For the purposes of the proof, we will consider the slightly more complex and more
realistic setting of multiple linear regression:

Yi = β0 + βZZi + βUUi + εi

= βtV Vi + βUUi + εi, (7)

where now βV = (β0, βZ), Vi = (1, Zi), and εi has mean 0. Here Y , V and U denote
the response variable, and two covariates measured without error, respectively. As before,
instead of the true predictor, Ui, an imperfect measurement Xi is available.

In the multiple linear regression setting, for the bth data set, the regression model (7)
can be expressed as

Yi = βtV Vi + βUXbi + εi

= βtV Vi + βU{Xi −
√
λkδ
∗
bi + (1 +

√
λk)µδ∗}+ εi

= βtV Vi + βU{Xi −
√
λkδ
∗
bi + a}+ εi,

=
(
Vi, Xi −

√
λkδ
∗
bi + a

)(βV
βU

)
+ εi

where a = (1 +
√
λk)µδ∗ . Using OLS to estimate the parameter in (8), we obtain

β̂NZMb (λk) =

[(
A B∗T

B∗ C∗

)]−1 (
k1
k∗
2

)
,

where

A =
∑

V
′
i Vi,

B∗ =
∑

V
′
i Xi −

√
λk
∑

V
′
i δ
∗
bi + a

∑
V
′
i ,

C∗ = λk
∑

δ∗2bi + na2 − 2
√
λk
∑

X
′
iδbi + 2a

∑
Xi

− 2a
√
λk
∑

δbi,

K1 =
∑

V
′
i Yi,

K∗2 =
∑

X
′
iYi −

√
λkδ
∗
biYi + a

∑
Yi.

Equation (8) can be expressed as(
A B∗T

B∗ C∗

)(
β̂V (λk)

β̂U (λk)

)
=

(
k1

k∗2

)
.

or, Aβ̂V (λk) +B∗T β̂U (λk) = k1 (8)

B∗β̂V (λk) +C∗β̂U (λk) = k∗2 (9)
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Solving this system of equations, we obtain the following parameters estimates:

β̂NZMV (λk) = A−1k1 −
A−1B∗k∗2 −A−1B∗B∗

′
A−1k1

C∗ −B∗′A−1B∗

and

β̂NZMU (λk) =
k∗2 −B∗

′
A−1k1

C∗ −B∗′A−1B∗

=
g1(
√
λk)− g2(

√
λk)

g3(λk)− g4(
√
λk)

(10)

Thus, we see that the components of β̂NZM (λk) are non-linear functions of λk.

The complex dependence of the NZM-SIMEX estimator on λk suggests that the estimator
may be sensitive to the choice of extrapolating function. We explore this in a comprehensive
series of simulations in the section that follows.
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Appendix B. Details of Simulation Study

B.1 Design of the Simulation Study

Table B1: Simulation Scenarios

Scenario Distribution of (U,V) True δ∗ Y Assumed δ∗b

1 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 0.25) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 0.25)

2 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 0.5) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 0.5)

3 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 1) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 1)

4 N


0

0

 ,

 1 0.447

0.447 1

 δ∗ = |δ| and δ ∼ N(0, 2) N(ηa1 , 1) δ∗b = |δb| and δb ∼ N(0, 2)

5 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) N(ηb2, 1) δ∗b ∼ P (1.5)

6 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (3) N(ηb2, 1) δ∗b ∼ P (3)

7 N


0

0

 ,

 1 0.447

0.447 1

 δ ∼ N(0, 0.5) N(ηa1 , 1) δb ∼ N(0, 0.25)

8 N


0

0

 ,

 1 0.447

0.447 1

 δ ∼ N(0, 0.5) N(ηa1 , 1) δb ∼ N(0, 0.75)

9 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) N(ηb2, 1) δ∗b ∼ P (0.75)

10 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) N(ηb2, 1) δ∗b ∼ P (2.25)

11 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (1.5) P (exp(ηc3)) δ∗b ∼ P (1.5)

12 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (3) P (exp(ηc3)) δ∗b ∼ P (3)

13 U ∼ P (12), V ∼ N(0, 1) δ∗ ∼ P (3) Bernoulli(pd, 1) δ∗b ∼ P (3)

ηa1 = −2 + 1 ∗ U + 0.25 ∗ V + 0.25 ∗ UV

ηb2 = 1 + 1 ∗ U + 1 ∗ V + 0.5 ∗ UV

ηc3 = 0.25 + 0.5 ∗ U + 0.05 ∗ V + 0.05 ∗ UV

pd = exp(η4)
1+exp(η4)

, where η4 = −2 + 0.25 ∗ U − 1 ∗ V + 0.25 ∗ UV

B.2 Simulation Results
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Table B2: Simulation results for a continuous outcome and a correctly specified error dis-
tribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation step;
SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 1: Y ∼ N(η1, 1) and δ ∼ N(0, 0.25).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25

n = 100
β0 -1.631 0.369 0.123 0.151 -1.997 0.003 0.119 0.014 -1.998 0.002 0.119 0.014

βU 0.900 -0.099 0.121 0.025 0.998 -0.002 0.136 0.018 1.000 0.000 0.136 0.019

βV 0.389 0.139 0.124 0.035 0.255 0.005 0.121 0.015 0.254 0.004 0.122 0.015
βUV 0.225 -0.025 0.101 0.011 0.243 -0.008 0.110 0.012 0.242 -0.008 0.111 0.012

n = 500
β0 -1.634 0.366 0.054 0.137 -2.000 -0.000 0.053 0.003 -2.001 -0.001 0.053 0.003

βU 0.899 -0.101 0.048 0.013 0.996 -0.004 0.054 0.003 0.998 -0.002 0.054 0.003

βV 0.388 0.138 0.055 0.022 0.252 0.002 0.055 0.003 0.251 0.001 0.055 0.003
βUV 0.232 -0.018 0.041 0.002 0.249 -0.001 0.045 0.002 0.249 -0.001 0.045 0.002

n = 1000

β0 -1.634 0.366 0.037 0.135 -1.999 0.000 0.037 0.001 -1.999 0.000 0.037 0.001
βU 0.897 -0.103 0.034 0.012 0.994 -0.006 0.038 0.002 0.997 -0.003 0.039 0.002

βV 0.389 0.139 0.039 0.021 0.253 0.003 0.038 0.001 0.257 0.002 0.038 0.001
βUV 0.232 -0.018 0.031 0.001 0.249 -0.001 0.033 0.001 0.249 -0.001 0.033 0.001

Scenario 2: Y ∼ N(η1, 1) and δ ∼ N(0, 0.5).

True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25

n = 100
β0 -1.523 0.477 0.132 0.245 -1.997 0.003 0.125 0.016 -1.998 0.002 0.125 0.016

βU 0.817 -0.183 0.119 0.048 0.979 -0.021 0.147 0.022 0.990 -0.009 0.149 0.023

βV 0.454 0.204 0.133 0.059 0.264 0.014 0.129 0.017 0.259 0.009 0.131 0.017
βUV 0.209 -0.041 0.101 0.012 0.239 -0.011 0.119 0.014 0.239 -0.010 0.121 0.015

n = 500
β0 -1.526 0.474 0.058 0.228 -1.999 0.000 0.056 0.003 2.001 -0.001 0.056 0.003

βU 0.816 -0.184 0.048 0.036 0.976 -0.024 0.058 0.004 0.987 -0.013 0.059 0.004

βV 0.455 0.205 0.059 0.045 0.261 0.011 0.058 0.004 0.256 0.006 0.058 0.003
βUV 0.217 -0.033 0.042 0.003 0.247 -0.003 0.048 0.002 0.248 -0.002 0.049 0.002

n = 1000

β0 -1.526 0.474 0.039 0.226 -1.999 0.001 0.039 0.001 -1.999 0.001 0.039 0.002
βU 0.814 -0.186 0.034 0.036 0.974 -0.026 0.041 0.002 0.985 -0.015 0.042 0.002

βV 0.456 0.206 0.041 0.044 0.262 0.012 0.039 0.002 0.257 0.007 0.040 0.002

βUV 0.217 -0.033 0.031 0.002 0.247 -0.003 0.036 0.001 0.248 -0.002 0.036 0.001

continued
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Table B2: (cont.) Simulation results for a continuous outcome and a correctly specified
measurement error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the
extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation
step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 3: Y ∼ N(η1, 1) and δ ∼ N(0, 1).
True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25

n = 100

β0 -1.424 0.576 0.146 0.353 -1.994 0.006 0.134 0.018 -1.997 0.003 0.136 0.019

βU 0.690 -0.309 0.115 0.109 0.914 -0.087 0.158 0.033 0.947 -0.053 0.168 0.031
βV 0.539 0.289 0.147 0.105 0.293 0.043 0.139 0.021 0.278 0.028 0.144 0.022

βUV 0.183 -0.067 0.101 0.015 0.229 -0.021 0.132 0.018 0.232 -0.018 0.137 0.019
n = 500

β0 -1.425 0.575 0.063 0.334 -1.996 0.004 0.060 0.0034 -1.999 0.001 0.061 0.004

βU 0.689 -0.311 0.047 0.099 0.911 -0.089 0.064 0.012 0.943 -0.0567 0.067 0.008
βV 0.542 0.292 0.064 0.089 0.289 0.039 0.063 0.006 0.275 0.025 0.064 0.005

βUV 0.191 -0.059 0.042 0.005 0.239 -0.011 0.053 0.011 0.243 -0.007 0.055 0.003

n = 1000
β0 -1.426 0.574 0.043 0.331 -1.995 0.005 0.042 0.002 -1.997 0.003 0.042 0.002

βU 0.687 -0.313 0.033 0.099 0.907 -0.093 0.044 0.011 0.939 -0.061 0.047 0.006
βV 0.544 0.294 0.045 0.089 0.292 0.042 0.043 0.004 0.277 0.027 0.044 0.003

βUV 0.192 -0.058 0.030 0.004 0.292 0.042 0.043 0.004 0.243 -0.007 0.039 0.003

Scenario 4: Y ∼ N(η1, 1) and δ ∼ N(0, 2).
True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25.

n = 100

β0 -1.367 0.633 0.163 0.428 -1.986 0.014 0.145 0.021 -1.993 0.008 0.151 0.023

βU 0.527 -0.473 0.105 0.235 0.769 -0.230 0.161 0.079 0.833 -0.167 0.181 0.061
βV 0.631 0.381 0.167 0.173 0.357 0.107 0.150 0.034 0.328 0.078 0.159 0.031

βUV 0.147 -0.103 0.097 0.020 0.203 -0.047 0.142 0.022 0.212 -0.038 0.155 0.026
n = 500

β0 -1.366 0.634 0.0699 0.407 -1.986 0.014 0.065 0.004 -1.992 0.008 0.067 0.005

βU 0.526 -0.474 0.044 0.227 0.768 -0.232 0.066 0.058 0.829 -0.170 0.074 0.035
βV 0.637 0.387 0.072 0.155 0.353 0.103 0.067 0.015 0.325 0.075 0.071 0.011

βUV 0.155 -0.095 0.040 0.010 0.215 -0.035 0.057 0.005 0.226 -0.024 0.062 0.004

n = 1000
β0 -1.427 0.5763 0.1458 0.353 -1.994 0.006 0.134 0.018 -1.997 0.003 0.136 0.019

βU 0.690 -0.309 0.115 0.109 0.914 -0.087 0.158 0.033 0.947 -0.053 0.168 0.031
βV 0.539 0.289 0.147 0.105 0.293 0.043 0.139 0.021 0.278 0.028 0.144 0.022

βUV 0.183 -0.067 0.101 0.015 0.229 -0.021 0.132 0.018 0.232 -0.018 0.137 0.019

continued
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Table B2: (cont.) Simulation results for a continuous outcome and a correctly specified
measurement error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the
extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation
step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 5: Y ∼ N(η2, 1) and δ∗ ∼ P (1.5).

True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 100
β0 3.672 2.672 0.510 7.402 1.076 0.076 0.696 0.489 1.035 0.035 0.712 0.509

βU 0.889 -0.111 0.045 0.014 0.994 -0.006 0.055 0.003 0.998 -0.002 0.056 0.003
βV 2.300 1.300 0.628 2.085 0.995 -0.005 0.856 0.733 0.982 -0.018 0.872 0.761

βUV 0.447 -0.053 0.054 0.006 0.500 0.000 0.066 0.004 0.501 0.001 0.067 0.005

n = 500
β0 3.667 2.667 0.238 7.169 1.076 0.076 0.308 0.101 1.038 0.038 0.310 0.098

βU 0.889 -0.111 0.021 0.013 0.994 -0.006 0.024 0.001 0.997 -0.003 0.024 0.001

βV 2.337 1.337 0.273 1.862 1.049 0.048 0.366 0.136 1.029 0.029 0.373 0.139
βUV 0.444 -0.056 0.024 0.004 0.496 -0.004 0.029 0.002 0.487 -0.002 0.029 0.001

n = 1000
β0 3.658 2.658 0.166 7.093 1.067 0.067 0.220 0.053 1.028 0.028 0.224 0.051

βU 0.889 -0.111 0.015 0.012 0.994 -0.006 0.017 0.000 0.998 -0.003 0.017 0.000

βV 2.333 1.334 0.183 1.812 1.038 0.038 0.244 0.061 1.017 0.017 0.249 0.063
βUV 0.444 -0.056 0.016 0.003 0.497 -0.003 0.019 0.000 0.499 -0.002 0.019 0.000

Scenario 6: Y ∼ N(η2, 1) and δ∗ ∼ P (3).

True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 33
β0 5.767 4.767 1.088 23.914 1.324 0.324 1.850 3.531 1.144 0.144 1.971 3.908

βU 0.801 -0.198 0.108 0.051 0.972 -0.027 0.145 0.021 0.987 -0.012 0.155 0.024

βV 3.307 2.307 1.246 6.879 1.030 0.030 2.165 4.689 0.923 -0.076 2.341 5.490
βUV 0.406 -0.093 0.122 0.023 0.495 -0.004 0.168 0.028 0.503 0.003 0.183 0.033

n = 100
β0 5.764 4.764 0.518 22.968 1.287 0.287 0.880 0.858 1.119 0.119 0.934 0.887

βU 0.804 -0.197 0.052 0.041 0.976 -0.024 0.069 0.005 0.989 -0.010 0.074 0.006

βV 3.344 2.344 0.643 5.908 1.088 0.088 1.108 1.236 1.015 0.015 1.167 1.362
βUV 0.405 -0.095 0.063 0.013 0.492 -0.008 0.086 0.007 0.498 -0.002 0.091 0.008

n = 500
β0 5.762 4.762 0.241 22.732 1.286 0.286 0.389 0.233 1.125 0.125 0.402 0.178
βU 0.804 -0.196 0.024 0.039 0.976 -0.024 0.030 0.002 0.989 -0.010 0.031 0.001
βV 3.383 2.383 0.282 5.756 1.156 0.156 0.477 0.252 1.076 0.076 0.503 0.259

βUV 0.402 -0.098 0.028 0.010 0.487 -0.013 0.037 0.002 0.494 -0.007 0.039 0.002

n = 1000

β0 5.749 4.749 0.168 22.579 1.269 0.269 0.276 0.149 1.106 0.106 0.288 0.094
βU 0.805 -0.195 0.017 0.038 0.977 -0.023 0.022 0.001 0.990 -0.009 0.023 0.001

βV 3.379 2.379 0.193 5.701 1.143 0.143 0.321 0.123 1.061 0.061 0.334 0.116
βUV 0.402 -0.098 0.019 0.010 0.488 -0.012 0.025 0.001 0.495 -0.006 0.026 0.001
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Table B3: Simulation results for a continuous outcome and a mis-specified measurement
error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation
step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 7: Y ∼ N(η2, 1), δ ∼ N(0, 0.5) and δb ∼ N(0, 0.25).
True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25.

n = 100
β0 -1.523 0.476 0.132 0.245 -1.842 0.157 0.121 0.039 -1.842 0.157 0.121 0.039
βU 0.817 -0.182 0.119 0.047 0.897 -0.102 0.132 0.028 0.899 -0.100 0.133 0.027
βV 0.454 0.204 0.132 0.059 0.337 0.087 0.124 0.023 0.336 0.086 0.125 0.023

βUV 0.209 -0.040 0.101 0.011 0.224 -0.025 0.109 0.012 0.223 -0.026 0.109 0.012
n = 500

β0 -1.525 0.474 0.057 0.228 -1.844 0.155 0.054 0.027 -1.844 0.155 0.054 0.027
βU 0.816 -0.183 0.047 0.036 0.895 -0.104 0.052 0.013 0.897 -0.102 0.052 0.013
βV 0.454 0.204 0.058 0.045 0.334 0.084 0.056 0.010 0.334 0.084 0.056 0.010

βUV 0.216 -0.033 0.041 0.002 0.231 -0.018 0.044 0.002 0.231 -0.018 0.044 0.002
n = 1000

β0 -1.526 0.473 0.039 0.226 -1.844 0.155 0.037 0.025 -1.844 0.155 0.037 0.025
βU 0.814 -0.185 0.033 0.035 0.893 -0.106 0.037 0.012 0.895 -0.104 0.037 0.012
βV 0.456 0.206 0.041 0.044 0.336 0.086 0.038 0.008 0.335 0.085 0.038 0.008

βUV 0.216 -0.033 0.030 0.002 0.231 -0.018 0.032 0.001 0.231 -0.018 0.032 0.001

Scenario 8: Y ∼ N(η2, 1), δ ∼ N(0, 0.5) and δb ∼ N(0, 0.75).
True values of the parameters are β0 = −2, βU = 1, βV = 0.25 and βUV = 0.25.

n = 100
β0 -2.136 -0.136 0.131 0.036 -2.143 -0.143 0.133 0.038
βU 1.054 0.054 0.160 0.028 1.084 0.084 0.168 0.035
βV 0.198 -0.051 0.135 0.021 0.184 -0.065 0.139 0.023

βUV 0.254 0.004 0.128 0.016 0.256 0.006 0.133 0.017
n = 500

β0 -2.139 -0.139 0.059 0.023 -2.145 -0.145 0.059 0.024
βU 1.051 0.051 0.063 0.006 1.081 0.081 0.066 0.010
βV 0.193 -0.056 0.061 0.006 0.179 -0.070 0.062 0.008

βUV 0.262 0.012 0.051 0.002 0.265 0.015 0.053 0.003
n = 1000

β0 -2.138 -0.138 0.040 0.020 -2.143 -0.143 0.041 0.022
βU 1.048 0.048 0.044 0.004 1.078 0.078 0.046 0.008
βV 0.194 -0.055 0.041 0.004 0.181 -0.068 0.042 0.006

βUV 0.261 0.011 0.038 0.001 0.264 0.014 0.039 0.001

Scenario 9: Y ∼ N(η2, 1), δ∗ ∼ P (1.5) and δ∗b ∼ P (0.75).
True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 100
β0 3.672 2.672 0.510 7.401 2.423 1.423 0.590 2.374 2.417 1.417 0.596 2.363
βU 0.888 -0.111 0.045 0.014 0.940 -0.059 0.049 0.006 0.941 -0.058 0.049 0.006
βV 2.300 1.300 0.628 2.085 1.670 0.670 0.729 0.981 1.673 0.673 0.729 0.985

βUV 0.447 -0.052 0.054 0.006 0.473 -0.026 0.059 0.004 0.473 -0.026 0.059 0.004
n = 500

β0 3.666 2.666 0.237 7.168 2.420 1.420 0.268 2.089 2.415 1.415 0.268 2.076
βU 0.889 -0.110 0.020 0.012 0.940 -0.059 0.021 0.003 0.941 -0.058 0.021 0.004
βV 2.336 1.336 0.273 1.861 1.717 0.717 0.313 0.612 1.713 0.713 0.316 0.609

βUV 0.444 -0.055 0.023 0.003 0.469 -0.030 0.025 0.001 0.470 -0.029 0.026 0.001
n = 1000

β0 3.658 2.658 0.166 7.093 2.411 1.411 0.189 2.028 2.405 1.405 0.190 2.010
βU 0.889 -0.110 0.014 0.012 0.940 -0.059 0.015 0.003 0.941 -0.058 0.015 0.003
βV 2.333 1.333 0.183 1.811 1.710 0.710 0.209 0.548 1.705 0.705 0.211 0.542

βUV 0.444 -0.055 0.015 0.003 0.470 -0.029 0.016 0.001 0.470 -0.029 0.017 0.001

continued
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Table B3: (cont.)Simulation results: Simulation results for a continuous outcome and a mis-
specified measurement error distribution. SIMEX-Q is the NZM SIMEX with a quadratic
fit in the extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the
extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 10: Y ∼ N(η2, 1), δ∗ ∼ P (1.5) and δ∗b ∼ P (2.25).
True values of the parameters are β0 = 1, βU = 1, βV = 1 and βUV = 0.5.

n = 100
β0 -0.343 -1.343 0.817 2.472 -0.464 -1.464 0.859 2.884
βU 1.047 0.047 0.061 0.005 1.056 0.056 0.064 0.007
βV 0.283 -0.716 1.001 1.516 0.232 -0.767 1.048 1.687

βUV 0.526 0.026 0.073 0.006 0.530 0.030 0.077 0.006
n = 500

β0 -0.341 -1.341 0.354 1.925 -0.458 -1.458 0.364 2.260
βU 1.046 0.046 0.025 0.002 1.055 0.055 0.026 0.003
βV 0.343 -0.656 0.424 0.611 0.285 -0.714 0.444 0.708

βUV 0.522 0.022 0.031 0.001 0.526 0.026 0.033 0.001
n = 1000

β0 -0.351 -1.351 0.255 1.892 -0.470 -1.470 0.265 2.232
βU 1.047 0.047 0.018 0.002 1.056 0.056 0.019 0.003
βV 0.328 -0.671 0.284 0.531 0.267 -0.732 0.297 0.625

βUV 0.523 0.023 0.020 0.001 0.528 0.021 0.028 0.001
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Table B4: Simulation results for a Poisson outcome and a correctly specified measurement
error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation
step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 11: Y ∼ P (exp(η3)) and δ∗ ∼ P (1.5).
True values of the parameters are β0 = 0.25, βU = 0.5, βV = 0.05 and βUV = 0.05.

n = 100
β0 1.258 1.008 0.136 1.036 0.302 0.052 0.247 0.064 0.231 -0.018 0.275 0.076
βU 0.379 -0.120 0.045 0.016 0.483 -0.016 0.056 0.003 0.501 0.001 0.063 0.004
βV 0.163 0.113 0.136 0.031 0.060 0.010 0.271 0.073 0.054 0.004 0.306 0.094

βUV 0.036 -0.013 0.047 0.002 0.047 -0.002 0.065 0.004 0.047 -0.002 0.074 0.005
n = 500

β0 1.240 0.990 0.071 0.985 0.268 0.018 0.125 0.016 0.194 -0.055 0.138 0.022
βU 0.390 -0.109 0.024 0.012 0.491 -0.008 0.028 0.000 0.510 0.010 0.031 0.001
βV 0.150 0.100 0.072 0.015 0.040 -0.009 0.138 0.019 0.030 -0.019 0.155 0.024

βUV 0.042 -0.007 0.025 0.000 0.052 0.002 0.032 0.001 0.054 0.004 0.036 0.001
n = 1000

β0 1.241 0.991 0.050 0.985 0.270 0.020 0.084 0.007 0.198 -0.051 0.094 0.011
βU 0.390 -0.109 0.017 0.012 0.491 -0.008 0.019 0.000 0.510 0.010 0.021 0.000
βV 0.153 0.103 0.053 0.013 0.051 0.001 0.101 0.010 0.042 -0.007 0.115 0.013

βUV 0.041 -0.008 0.019 0.000 0.049 -0.000 0.023 0.000 0.051 0.001 0.027 0.000

Scenario 12: Y ∼ P (exp(η3)) and δ∗ ∼ P (3).
True values of the parameters are β0 = 0.25, βU = 0.5, βV = 0.05 and βUV = 0.05.

n = 33
β0 2.695 2.445 1.232 7.502 0.415 0.165 2.369 5.642 0.304 0.054 2.970 8.827
βU 0.411 -0.088 0.100 0.017 0.487 -0.012 0.154 0.024 0.495 -0.004 0.193 0.037
βV 0.320 0.270 1.238 1.607 0.059 0.009 1.540 1.454 0.075 0.025 1.3011 1.898

βUV 0.039 -0.010 0.104 0.010 0.048 -0.001 0.169 0.028 0.047 -0.002 0.219 0.048
n = 100

β0 1.888 1.638 0.105 2.694 0.490 0.240 0.320 0.160 0.351 0.101 0.370 0.147
βU 0.301 -0.198 0.053 0.042 0.430 -0.069 0.071 0.009 0.466 -0.033 0.082 0.007
βV 0.229 0.179 0.106 0.043 0.090 0.040 0.351 0.124 0.078 0.028 0.425 0.181

βUV 0.027 -0.022 0.054 0.003 0.040 -0.009 0.082 0.006 0.042 -0.007 0.100 0.010
n = 500

β0 1.889 1.639 0.051 2.691 0.433 0.183 0.173 0.063 0.288 0.038 0.195 0.039
βU 0.313 -0.186 0.029 0.035 0.445 -0.054 0.038 0.004 0.483 -0.016 0.043 0.002
βV 0.226 0.176 0.054 0.034 0.053 0.003 0.177 0.031 0.033 -0.016 0.208 0.043

βUV 0.035 -0.014 0.028 0.001 0.049 -0.001 0.040 0.001 0.053 0.003 0.047 0.002
n = 1000

β0 1.892 1.642 0.035 2.699 0.435 0.185 0.113 0.047 0.292 0.042 0.123 0.017
βU 0.313 -0.186 0.020 0.035 0.446 -0.053 0.025 0.003 0.482 -0.017 0.027 0.001
βV 0.226 0.176 0.039 0.032 0.064 0.014 0.128 0.016 0.049 -0.001 0.148 0.022

βUV 0.034 -0.015 0.022 0.001 0.046 -0.003 0.029 0.001 0.049 -0.001 0.034 0.001
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Table B5: Simulation results for a Bernoulli outcome and a correctly specified measurement
error distribution. SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation
step; SIMEX-NL is the NZM SIMEX with a non-linear fit in the extrapolation step.

Näıve SIMEX-Q SIMEX-NL

β̂OLS Bias SE MSE β̂NZM Bias SE MSE β̂NZM Bias SE MSE

Scenario 13: Y ∼ Bernoulli(p) and δ∗ ∼ P (3).
True values of the parameters are β0 = −2, βU = 0.25, βV = −1 and βUV = 0.25.

n = 100
β0 -0.836 1.164 0.769 1.946 -2.033 -0.033 1.379 1.905 -2.083 -0.083 1.439 2.079
βU 0.204 -0.045 0.097 0.011 0.259 0.009 0.131 0.017 0.263 0.013 0.137 0.019
βV 0.236 1.236 0.929 2.391 -0.953 0.048 1.657 2.748 -0.991 0.009 1.724 2.974

βUV 0.204 -0.046 0.122 0.017 0.260 0.010 0.165 0.027 0.264 0.014 0.171 0.029
n = 500

β0 -0.767 1.233 0.279 1.599 -1.872 0.128 0.483 0.249 -1.916 0.084 0.499 0.256
βU 0.189 -0.061 0.034 0.005 0.239 -0.011 0.045 0.002 0.243 -0.007 0.046 0.002
βV 0.224 1.224 0.349 1.621 -0.864 0.136 0.607 0.386 -0.904 0.096 0.625 0.400

βUV 0.187 -0.063 0.045 0.006 0.238 -0.012 0.059 0.004 0.242 -0.008 0.060 0.004
n = 1000

β0 -0.777 1.223 0.195 1.533 -1.886 0.114 0.337 0.126 -1.930 0.069 0.345 0.124
βU 0.189 -0.060 0.024 0.004 0.239 -0.010 0.031 0.001 0.244 -0.006 0.032 0.001
βV 0.228 1.228 0.253 1.571 -0.858 0.142 0.439 0.213 -0.898 0.102 0.448 0.211

βUV 0.186 -0.064 0.031 0.005 0.238 -0.012 0.042 0.002 0.242 -0.008 0.043 0.002
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Appendix C. Additional results from the SPOT analysis

Table C1: Results from simple linear regression. SIMEX-Q is the NZM SIMEX with a
quadratic fit in the extrapolation step; SIMEX-NL is the NZM SIMEX with a non-linear
fit in the extrapolation step. In the first panel, β1 indicates the expected difference in
age between two groups of men whose cluster size differs by one individual, whereas in
the second panel, β1 expected difference in the number of sex partners associated with a
one-person difference in cluster size.

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating age to cluster size

β0 3 34.283 2.207 0.000 34.607 2.801 0.000 34.733 2.801 0.000
β1 3 -0.123 0.141 0.388 -0.119 0.149 0.421 -0.131 0.149 0.381

β0 1 34.441 2.633 0.000 34.374 2.635 0.000
β1 1 -0.126 0.153 0.409 -0.120 0.154 0.434

β0 5 34.979 3.142 0.000 34.905 3.143 0.000
β1 5 -0.129 0.158 0.415 -0.123 0.158 0.438

β0 10 5.279 1.645 0.001 5.239 1.659 0.002
β1 10 0.025 0.077 0.746 0.027 0.078 0.729

Model: Relating number of sex partners to cluster size

β0 3 5.552 1.119 0.000 5.524 1.064 0.000 5.505 1.064 0.000
β1 3 0.023 0.071 0.753 0.023 0.065 0.720 0.025 0.065 0.702

β0 1 5.449 1.164 0.000 5.466 1.167 0.000
β1 1 0.025 0.067 0.705 0.024 0.067 0.724

β0 5 5.349 1.321 0.000 5.415 1.320 0.000
β1 5 0.028 0.069 0.678 0.024 0.069 0.725

β0 10 1.673 0.299 0.000 1.673 0.299 0.000
β1 10 0.004 0.013 0.755 0.004 0.013 0.759

* mean of the measurement error distribution, Poisson(µ)
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Table C2: Results from the simple logistic regression model. SIMEX-Q is the NZM SIMEX
with a quadratic fit in the extrapolation step; SIMEX-NL is the NZM SIMEX with a
non-linear fit in the extrapolation step. In the top and bottom panels, β1 represents the
difference in the log odds ratio for, respectively, the use of a condom at the last sexual
intercourse and having had an HIV last in the last 24 months associated with a one-person
difference in cluster size

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating condom use to cluster size

β0 3 2.619 0.772 0.001 2.198 1.104 0.012 2.197 1.105 0.012
β1 3 -0.047 0.036 0.195 -0.013 0.083 0.567 -0.013 0.083 0.559

β0 1 2.151 0.946 0.005 2.151 0.945 0.005
β1 1 -0.010 0.083 0.569 -0.010 0.083 0.572

β0 5 2.229 1.289 0.025 2.229 1.291 0.027
β1 5 -0.013 0.085 0.564 -0.013 0.085 0.581

β0 10 2.289 1.739 0.076 2.288 1.746 0.069
β1 10 -0.014 0.088 0.591 -0.013 0.088 0.565

Model: Relating HIV tests in the last 24 months to cluster size

β0 3 1.686 0.732 0.021 1.226 0.654 0.015 1.228 0.655 0.018
β1 3 0.038 0.067 0.573 0.044 0.054 0.515 0.044 0.054 0.482

β0 1 1.311 0.564 0.004 1.311 0.564 0.003
β1 1 0.046 0.057 0.499 0.046 0.057 0.535

β0 5 1.126 0.781 0.055 1.130 0.781 0.071
β1 5 0.045 0.058 0.527 0.044 0.058 0.448

β0 10 0.955 1.082 0.255 0.964 1.095 0.219
β1 10 0.042 0.058 0.486 0.041 0.059 0.559

* mean of the measurement error distribution, Poisson(µ)
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Table C3: Results from log-linear model of number of sex partners on cluster size. SIMEX-
Q is the NZM SIMEX with a quadratic fit in the extrapolation step; SIMEX-NL is the NZM
SIMEX with a non-linear fit in the extrapolation step. β1 indicates the expected difference
the number of sex partners (top panel) and one night sex partners (bottom panel), on the
log scale, between two groups of men whose cluster size differs by one individual.

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating number of sex partners on cluster size

β0 3 1.716 0.097 0.000 1.709 0.202 0.000 1.700 0.201 0.000
β1 3 0.004 0.006 0.526 0.003 0.011 0.752 0.004 0.011 0.702

β0 1 1.714 0.184 0.000 1.709 0.184 0.000
β1 1 0.004 0.011 0.737 0.004 0.011 0.711

β0 5 1.692 0.224 0.000 1.705 0.224 0.000
β1 5 0.004 0.011 0.707 0.003 0.011 0.762

β0 10 1.659 0.275 0.000 1.659 0.278 0.000
β1 10 0.005 0.012 0.704 0.005 0.013 0.706

Model: Relating number of one night partners on cluster size

β0 3 1.411 0.112 0.000 1.399 0.296 0.000 1.389 0.296 0.000
β1 3 0.004 0.006 0.568 0.004 0.015 0.797 0.004 0.015 0.761

β0 1 1.407 0.267 0.000 1.403 0.267 0.000
β1 1 0.004 0.014 0.787 0.004 0.014 0.767

β0 5 1.390 0.314 0.000 1.391 0.313 0.000
β1 5 0.004 0.016 0.801 0.003 0.016 0.803

β0 10 1.354 0.408 0.001 1.345 0.414 0.001
β1 10 0.005 0.018 0.789 0.005 0.018 0.778

* mean of the measurement error distribution, Poisson(µ)
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Table C4: Results from multinomial model of number of one night partners on cluster size.
SIMEX-Q is the NZM SIMEX with a quadratic fit in the extrapolation step; SIMEX-NL
is the NZM SIMEX with a non-linear fit in the extrapolation step. β1(2−4) indicates the
expected difference in the log odds of having 2-4 one night partners between two groups of
men whose cluster size differs by one individual; β1(5+) is the expected difference in the log
odds of having at least 5 one night partners between two groups of men whose cluster size
differs by one individual.

Näıve SIMEX-Q SIMEX-NL

Parameter µ∗ β̂OLS SE p-value β̂NZM SE p-value β̂NZM SE p-value

Model: Relating number of one night partners on cluster size

β0(2−4) 3 -1.605 0.780 0.039 -1.727 15.143 0.909 -1.740 31.497 0.955
β1(2−4) 3 0.036 0.051 0.474 0.037 0.573 0.948 0.038 1.179 0.974
β0(5+) 3 -0.302 0.522 0.562 -0.427 0.760 0.574 -0.441 0.762 0.562
β1(5+) 3 0.038 0.039 0.331 0.039 0.058 0.499 0.039 0.057 0.488

β0(2−4) 1 -1.660 12.812 0.897 -1.630 22.317 0.942
β1(2−4) 1 0.038 0.524 0.942 0.036 0.903 0.968
β0(5+) 1 -0.347 0.660 0.599 -0.354 0.660 0.591
β1(5+) 1 0.038 0.055 0.483 0.039 0.055 0.477

β0(2−4) 5 -1.792 16.775 0.915 -1.817 38.775 0.963
β1(2−4) 5 0.036 0.591 0.950 0.039 1.351 0.977
β0(5+) 5 -0.499 0.879 0.569 -0.501 0.881 0.569
β1(5+) 5 0.038 0.060 0.524 0.038 0.060 0.518

β0(2−4) 10 -2.012 14.199 0.887 -2.01 34.997 0.954
β1(2−4) 10 0.039 0.428 0.927 0.038 1.045 0.970
β0(5+) 10 -0.767 1.182 0.516 -0.746 1.214 0.538
β1(5+) 10 0.042 0.064 0.511 0.041 0.067 0.544

* mean of the measurement error distribution, Poisson(µ)
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Allodji, R. S., Thiúbaut, A. C. M., Leuraud, K., Rage, E., Henry, S., Laurier, D. and
Bénichou, J. (2012). The performance of functional methods for correcting non-Gaussian
measurement error within Poisson regression: corrected excess risk of lung cancer mor-
tality in relation to radon exposure among French uranium miners. Statistics in Medicine
31, 4428-4443.

http://www.amfar.org/about-hiv-and-aids/facts-and-stats/

statistics--worldwide/

http://www.cdc.gov/std/stats/sti-estimates-fact-sheet-feb-2013.pdf

http://www.avert.org/canada-hiv-aids-statistics.htm

Brenner, B. G. , Roger, M., Routy, J. P., Moisi, D., Ntemgwa, M., Matte, C., Baril, J. G.,
Thomas, R., Rouleau, D., Bruneau, J., Leblanc, R., Legault, M., Tremblay, C., Charest,
H., Wainberg, M. A., and the Quebec PHI Study Group. (2007). High Rates of For-
ward Transmission Events Following Acute/Early HIV-1 Infection. Journal of Infectious
Disease 195(7),951-9. PMID: 17330784.

Brenner, B. G., Wainberg, M. A., and Roger, M. (2013). Phylogenetic inferences on HIV
-1 transmission: implications for the design of prevention and treatment interventions.
AIDS 27, 1045-1057, PMID:23902920.

Brenner, B. G. and Moodie, E. E. M. (2012). HIV Sexual Networks: The Montreal
Experience. Statistical Communications in Infectious Diseases 4:1, 1948-4690, DOI:
10.1515/1948-4690.1039.

Brenner, B. G., and Wainberg, M. A. (2013). Future of phylogeny in prevention. Journal of
Acquired Immune Deficiency Syndrome 2, S248-54, PMID:23764643.

Brown, A. J. L., Lycett, S. J., Weinert, L., Hughes, G. J., Fearnhill, E. and Dunn, D. T.
(2011). Transmission Network Parameters Estimated From HIV Sequences for a Nation-
wide Epidemic. The Journal of Infectious Diseases 204, 14639.

Carrol, R. J., and Stefanski, L. A. (1990). Approximate qasilikelihood estimation in models
with surrogate predictors. Journal of American Statistical Association 85, 652-663.
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